3.1064 \(\int \frac{x^{5/2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=331 \[ -\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}} \]

[Out]

-(((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c
^(3/4)*Sqrt[b^2 - 4*a*c])) + ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 -
 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2^(1/4)*c^(1/4
)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(3
/4)*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.442259, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1115, 1374, 298, 205, 208} \[ -\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + b*x^2 + c*x^4),x]

[Out]

-(((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c
^(3/4)*Sqrt[b^2 - 4*a*c])) + ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 -
 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2^(1/4)*c^(1/4
)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(3
/4)*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c])

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1374

Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(d^n*(b/q + 1))/2, Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Dist[(d^n*(b/q - 1))/2, Int[(d*x)^(m
 - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
 0] && GeQ[m, n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{5/2}}{a+b x^2+c x^4} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^6}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )\\ &=-\frac{\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} \sqrt{c}}+\frac{\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} \sqrt{c}}-\frac{\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} \sqrt{c}}+\frac{\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} \sqrt{c}}\\ &=-\frac{\left (-b-\sqrt{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-b+\sqrt{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-b-\sqrt{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (-b+\sqrt{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [C]  time = 0.0281135, size = 48, normalized size = 0.15 \[ \frac{1}{2} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^3 \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^4 c+b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + b*x^2 + c*x^4),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , (Log[Sqrt[x] - #1]*#1^3)/(b + 2*c*#1^4) & ]/2

________________________________________________________________________________________

Maple [C]  time = 0.246, size = 45, normalized size = 0.1 \begin{align*}{\frac{1}{2}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{6}}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(c*x^4+b*x^2+a),x)

[Out]

1/2*sum(_R^6/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{5}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(x^(5/2)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.20986, size = 8469, normalized size = 25.59 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)
/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*arctan(1/2*((
b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6
 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt((a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*x - 1/2*sqrt(1/2)*(a^3
*b^7 - 6*a^4*b^5*c + 9*a^5*b^3*c^2 - 4*a^6*b*c^3 + (a^3*b^8*c^3 - 13*a^4*b^6*c^4 + 60*a^5*b^4*c^5 - 112*a^6*b^
2*c^6 + 64*a^7*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*
sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b
^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5))) + (a^2*b^6 - 6*a^3*b^4*c + 9*a^
4*b^2*c^2 - 4*a^5*c^3 + (a^2*b^7*c^3 - 9*a^3*b^5*c^4 + 24*a^4*b^3*c^5 - 16*a^5*b*c^6)*sqrt((b^4 - 2*a*b^2*c +
a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(x))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c
 - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*
c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))/(a^3*b^4 - 2*a^4*b^2*c + a^5*c^2)) + 2*sqrt(sqrt(1/
2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*
a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*arctan(-1/2*((b^4 - 5*a*b^2*
c + 4*a^2*c^2 - (b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^
7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt((a^4*b^4 - 2*a^5*b^2*c + a^6*c^2)*x - 1/2*sqrt(1/2)*(a^3*b^7 - 6*a^4*b
^5*c + 9*a^5*b^3*c^2 - 4*a^6*b*c^3 - (a^3*b^8*c^3 - 13*a^4*b^6*c^4 + 60*a^5*b^4*c^5 - 112*a^6*b^2*c^6 + 64*a^7
*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(-(b^3 - 3
*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^
2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^
3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a
^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5))) + (a^2*b^6 - 6*a^3*b^4*c + 9*a^4*b^2*c^2 - 4*a^5*c^3 - (a^2*b
^7*c^3 - 9*a^3*b^5*c^4 + 24*a^4*b^3*c^5 - 16*a^5*b*c^6)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c
^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*
a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 -
8*a*b^2*c^4 + 16*a^2*c^5))))/(a^3*b^4 - 2*a^4*b^2*c + a^5*c^2)) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b
^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 -
 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*log(1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16
*a^3*b*c^3 - (b^8*c^3 - 14*a*b^6*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c +
 a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*
c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64
*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)
*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*
c^4 + 16*a^2*c^5)) - (a^2*b^2 - a^3*c)*sqrt(x)) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2
*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(
b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*log(-1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 - (b
^8*c^3 - 14*a*b^6*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*
c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c
^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^
4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*
a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^
5)) - (a^2*b^2 - a^3*c)*sqrt(x)) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c
^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b
^2*c^4 + 16*a^2*c^5)))*log(1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 + (b^8*c^3 - 14*a*b^
6*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c
^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)
*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*
c^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^
2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)) - (a^2*b^2 -
 a^3*c)*sqrt(x)) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 -
2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*
c^5)))*log(-1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 + (b^8*c^3 - 14*a*b^6*c^4 + 72*a^2*
b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2
*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*
a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^
5)))*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 1
2*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)) - (a^2*b^2 - a^3*c)*sqrt(x)
)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{5}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(x^(5/2)/(c*x^4 + b*x^2 + a), x)